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DESIGN OF ACHROMATIC BENDING SYSTEMS IN THE PRESENCE OF SPACE CHARGE"
A.J. Jason, E. M. Svaton', B.Blind, E. A. Heighway, MS-H808

Los Alamos National Laboratory, Los Alamos,

Abstract

The usual conditions for achromaticity of a dispersive
system are shown to be inadequate when space-charge
effects are included, Using a matrix formulation de-
scribing linear space-charge forces, we give generalized
criteria necessary for a system to achromatic.
Additionally, these conditions are nececssary for con-
servation of transverae emittances. An example of such a
system is given,

Introduction

Dssigners of accelerator transport systems are
required to consider the opt.icl of spece-charge-influenced
beams (i.e., collections of charged particles transported
under conditions such that the Coulomb forces between
the particles are appreciable compared to the applied
confinement forces) for applications such as heavy-ion
fusion orneutron-spallationsources.

In the design of systems with negligible space cha;ge,
one has available a library of devices such as periodic
lines, triplets, achroma‘ic bends, etc.,, whose¢ general
E:opert.iel are 30 well known that trensport lines car. oflten

constructed by an educated guess at the azsemblage of
devices necesa and subsequen:¢ optimization by
transport codes. ?;1deed. this process has been carried out
to second and third order. The situation for space-charge.
influenced systams is in a more primitive state, and Bn
behsvior or even appropriateness of zero-current devices
to these situations 18 not well categorized in general,
Although codes exist for the treatment of flnite current
systems, some with optimizars for the case of linear fields,
Lﬂe general guidance afforded by known devices ia minsing
and, hence, the prcess of optimization is awkward, We
are purtuing the analytical understanding of configu-
rations useful in space-charge-dominated systems. Here
we darive a stralghtforwaid buat nonetheless useful
algorithm for achromatization of linear devices The usual
zonditions, vanishing of the matrir elementa R, and R,
are shown to be insufflcient.

Linear Systems

We maxe a distinction between two cases: (1) the
approximatior. of linear salf-Nelds is sufficiently adequate
to describe the syetem, and (2) mnornlinearities are
important. Analogies between Case (1) and zaro-current
first-order transport are not qualitativaly supportable
because, for a giver distribution of charge in a beam
(except the spatially uniform distribution), nonlinearities
will present :hat are not known to be amaenable to
linesrization by electromagnetic components. Nonethe-
‘ass, Case (1) has a wide rang: of applicability In practice,
and useful staternents may be made about the behavior of

amg. An importaat step was made in this respect
ache er,' who showed that modon of the rms envelope
ndant of heam distribution; hence, core evolution
e y a unear model. This notior. has been
further exemplified and slaborated upon by Hofmann?
who al.o notad that focused baams tend to evolve toward
uniform spatial distribution (f the nonlinearites are not
such as to provoke instability. Thus, despita the com.
plexity of Case (2, beams, linear models are often
applicable and it isencouraging to work toward conditions
that promote linearity. In this paper, we treat beams that
can be consldered as belonging to Case /1). Wa aitu con.
fine our remarks Lo systarns that are symmaetric about the
1-8(transverse-longitudinal)npatislplanes.

*Work performed under the auspices of the U § Depariment of
Energy and supportad by the U 8 Army Strategic Defense Command
tRocketdyne Division, Rockwaell International, Csnoga Park,
Californla.
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Matrix Elements

One of the difficulties involved in studying even the
linear space-charge case is the lack of sy ametries that are
present in the evolution of zero-current beams. In par-
ticular, the longitudinal motion changes in a quasi-
irreversible manner and affects the value of transverse
matrix elements. In nondispersive systems, the coupling
between longitudinal and transverse planes is irnplicit in
that mixed raatrix elements do not occur. However, in the
dispersive case, explicit coupling does occur. This be-
havior can bte traced to the nature of the infinitesimal
transformations that, when integrated, constitute the net
transformation.

Consider an infinitesimal 'ength dl in a bend magnet.
Omitting the 3-4 (y&’) plane, which remains independent,

the transformation through dlis
i 17 0 Ble 1 0 0 0
Bn Bzz 0 B,n Adlo1 0 0
] (M
0 0 1 0
By By ! By
0 0 Adl 1
0 0 0 1 '

where the left matrix is the transformation for a magnet of
len&ﬂa d! and the right matrnix {s the space-charge kick
with transverse and longitudinal defocusing gradienta A

and A;, respectively. Here we designate the position and
slope in the transverss plane by indices 1 and 2,
respectively, the deviation of longitudinal displacement
from the beam centar by 5, and fractional momentum
deviation by 8. Except for the presence of a 6-5 element in
the right matrix, the transionnation would have no
unusual properties but would eimply integrate as ¢
combined-function magnet. The presence of this element
provides a fundamental change In the nature of the net
transformation. Carrying out the integration (analytical
evaluation Is possible under special assumptions, but
evaluation by a transport code yields the same results),
the generic result {s

Datarminanta of the transverse and longitudinalblocks
are no longer unity as they would be in a nondispersive
system, even with space charge. Without the longitudinal
lens or without dispersive properties, the outlined
elements 1-5, 2.5, 6-1, and 8-2 would be zero. In a non-
diwperaive system, the addition of space charge invokes a
finita 8-5 element but changes the value of the 8-8 element
to maintain the detarminant of the longitudinal hlock at
unity (with a consequent increasa in the beam-energy
spread). Additionally, the interplane elements are zero
for a nondispersive syatam.

These results are not afTected by assumptions as o the
form of the space-charge forces, requiring only linearity in
di. For example, inclusion of beam-wall interactionys
would change the value of the matriz elements but would
not altar the systam linearity to first order. Additionally,
{t {n not required that flelds be produced by the beam; the
form of the matriz in Eq. (2) would be more familiar were
rldicrl‘rncq_.\‘:ncy cavities normally placed In dispersive
regions. is emphasizas the t.umIJ:rqnce of time asym.
metry to the transversa plane from the time-varying
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longitudinal beam fields, similar to the case of an
externally imposed time-varying field.

Achromatization Conditions

A test for the achromaticity of a systemn consists of
transformation of every ray in the beam with independ-
ence of transverse coordinates on momentum. gor a
transformation R, this is aatisfied by the zero-current
condition

Rig = R¢ =0 . 3)

Consider, however, a transpert line influenced by space
charge with three sections and respective transformations
RO, l-!‘, and R?. Here, R' contains dispersive elements and
is of the form in Eq. (2) while R? and

?are nondispersive.
The total transformation

R‘=R7OR10R° (4)

has elements

( _ 51 gl go 1 g0 7 pl po I g0

Rig= R\ (RigRyy = Ri(Reg) + R, Ry Ry + RygRep) (%)
and

« _p1 .pl pod 1 po 1 gl g0 1 o0
RI-RH(RMRM’RNR“)*‘RE (RBR!I + RN‘RM) (6)

The elements R, and R), donot disappear whenonly E:.

and R, are set equal to 2ero. The condition for achromaticity
in the presance of space charge is valid only when

Ry = Ry =0 &l

for the dispersive section in addition to the conditions in
Lq. (3). Conditions in Eqs. (3) and (7) are then automut.
ically satisfied for the total transformation.

In zero-current systems, values of the elements in
condition (3) are intiniately associated with the values of
elements 5.1 and 5-2 by relations depending on the system
symmetries. These latter elements disappear identically
as Eq. 13) ia satisfied, corresponding to independence of
eay-path length with initial transverse location or slope.
With the addition of space charge, the achromatic
conditions 13) and (7) are similarly and additionallylinked
to elementn 6. and 6.2, ray-momentum comes
independent vf transverse coordinatas. In either case, the
interplane blocks of the transformation matrix disappear,
leaving explicitly uncoupled submatrices for the
longitudinal and transverse planes with separate unity
determinants.

Emittance Growth

We define the transverss emittance ¢ by the usual
relation

t2 = 0y1032- 0122, T

where the matrix o is the beam matrix that, under a
transformation R, evolves ns

o'mReaeRT (9

In the absence of dispersion, the beam matrix consists
of uncoupled transverse and \onptudlnnl submatrices,
independent of the presance of space charge. Upon
transformation through a dispersive saction, all elementa
(in genersl) attain nonzero values with or without space
charge. Achromatization removes the coupled elements of
the matrix.

For non-space-charge systems, conservation of trans-
verse emittance at a given rnomentum is a consequence of
the unity value for the determinant of the submatrices
describing individual planes in R. If we expand the de-
finition of Eq. (8) to include a range of momenta, ¢ (in
general) increases for passage through dispersive systems
unless conditions (3) are satisfied. Similarly, when space
charge i8 present, it can be shown by straightforward
(although tedious) expansion of Eq. (8) that conditions (3)
and (7) are requirements for a constant emittance.
Consider a beam o with emittance ¢ transformed by R to a
beam o' with emittancec'. Then

e = (R,,R 0, )R, Ry 0, )- (R R, 0 )2 . (o

297 pq

If we let A, B, and C be the separately transformed

elemem..so'“,o27 and 0, which would be obtained in the

uncoupledcase, e.g.,

A=R %

) i

+ 2R, \R 0

2
12012 + Ry;%0

221 nn

then the transformed emittance becomes

¢? = (A+ 2R R0, + R, 20, + R ,70,,)e
(B+ 2R;,R,004, + Ryyfo,, + Ry %0,,) az
- [C+ (RyRyg + RjyRy) 04 + R Ryp0,, + R Rojog 7

Thus, the condition for formal equality with the
nondispersive case is identical to Eqs. (3) and (7). Because
the determinants of the transformation fc- the individual
planes are then un:'y, the transverse emittance remains
constant. Similarly, coaservation of the longitudinal
emittance, defined analogously to Eq. (8), depends on the
vanishing of the lower left-hand block of couplin
elements in Eq. (2), a concomnitant result of Egs. (3) an
(7). Although emittance may grow in a friver. phase-space
plane, the volume in four-dimensional space, of course,

remains constant. This demonstration is perhaps tau-
tologous, because, by the formalism of inur-oFticl.
emittance conservation is a direct consequance of the

previous section’s results. It is {nteresting, however, to
note from Eq. (12) that transverse emittance growth can
occur for an essentially monochromatic beam through the
beam's longitudinal extent (Va,,) if the system is not
achromatized.

An Example

In the absence of mors general criteria for the existence
and attainment of conditiors (n Eqs. (3) and (7), we
confine our discursion to & 1..merical example using the
tansport code TRACE 3.-D.* This code features an op-
timizer that operatas in the presence of its linear space-
charge algorithm  Our exampie, shown ir Fi;. 1,
consists of 8 50-MeV bearn deflected through 75" by
five equal-bend magnéts of l-m ridius, Transverse
confllnement {s provided by two quads of opposits sign
between each bend, and the sysieam has mirror symmetry
about the midplane, Qur procedure was to first find a
symmetric achromat at taro current. Naxt, charge wds
introduced (providing a tune depression of about 40%; and
a matched beam obtained. ¢ then constrained the
y-beam to (s matched value and locked the quads to
midplane mirror symmaetry. Requests for conditiona in
Eqs. (3) and 7) with the qtieds as verisble produced the
beam shown in Fig.l. Fractonal emittance growth was
less than 103 with the much reduced interplanematrix

*K R Crandall and RS Mills. "Truce 3 D Documentalinn,” Lns
Alamos National Laboratory repory, Lo ba published
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Fig. 1. Beamline configuration and transverse envelgFes
for an achromatized dispersive transport system. The
matched solution (at full current) is also shown.

elements obtained. For comparison, the same input beam,
ugon passage throx:gh one of the bends, suffered a
36% emittance growth., Although the emittance growth
through short nonachromatic regions may be small, larger
increases wiil occur in gubsequent transport because of
residual dispersion. This will be noted even for a drift, in
contrast to the zero-current case,

The example serves to illustrate the general points
previously raised. Additionally, evolution of the orig-
inally symmetric solution upon charge addition was to

maintain symmetry of the transverse forces by reducing
beam size (hence, increasing space-charge defocusing) as
the beam increased in longitudinal extent. A continuum
of alternative solutions is possible, corresponding to the
degrees of freedom available in quad strengths and beam
dimensions. The chosen solution is attractive because it
confines the beam well and l]nfresuzrves; a nearly matched
character. To assure that the achromaticity conditions
can be met with reasonable beam characteristics, it is
necessary to provide an adequate number of degrees of
freedom; sufficiently simple systems may not be even
approximately achromatizable. An example of this, for
which we have an analytic evaluation, is an impulsive
quad placed between two short bends. This well-known
system can meet condition (3) by adjustment of the quad,
but can only meet condition (7) through disappearance of
space-charge forces.
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